Czy liczby mogą mieć kształty?   - Poznajemy własności liczb naturalnych.

Liczbom trudno przypisać kształt. Jednakże badając je ludzie odkryli, że mają one szereg ciekawych właściwości. Weźmy jednakowe przedmioty, najlepiej kule i układajmy je obok siebie tworząc płaskie formy geometryczne, np. trójkąty, kwadraty, prostokąty, sześciokąty itd. Do uzyskania danego kształtu potrzebna jest określona liczba kul. O tej liczbie powiemy, że jest trójkątna, kwadratowa itd. w zależności od tego, jaką formę udało się ułożyć z odpowiadającej jej ilości przedmiotów.

Oczywiście kule można układać także jedne na drugich, przez co można tworzyć pryzmy, sześciany, prostopadłościany itp. Czasem, aby utrzymać dany kształt trzeba sobie pomóc dodatkową konstrukcją . Jednak istotne jest to, jaka ilość jest potrzebna, aby uzyskać określony kształt.

W naszym ćwiczeniu korzystamy z dwóch algorytmów (sposobów) układania kulek. Pierwszy próbuje ułożyć je w trójkąt, a drugi w kwadrat. Dla jakich liczb to się uda? Przekonajcie się klikając na klawisze + i -   Życzymy miłej zabawy.
I jeszcze pytanie. - Czy liczba może być zarazem trójkątna i kwadratowa? Jak myślicie?

Ze względu na ograniczoną ilość miejsca maksymalna liczba kulek wynosi 210.
opracował Witold Wojcik